

Available online at www.sciencedirect.com

Tetrahedron Letters 45 (2004) 4707-4710

Tetrahedron Letters

Suberitane network, a taxonomical marker for Antarctic sponges of the genus *Suberites*? Novel sesterterpenes from *Suberites caminatus*

Ana R. Díaz-Marrero,^a Inmaculada Brito,^a Mercedes Cueto,^a Aurelio San-Martín^b and José Darias^{a,*}

^aInstituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico F. Sánchez 3, Apdo. 195, 38206 La Laguna, Tenerife, Spain

^bDepartamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras, 3425 Santiago de Chile, Chile

Received 1 March 2004; revised 14 April 2004; accepted 16 April 2004

Abstract—Two novel sesterterpenes 1 and 2 have been isolated from the Antarctic sponge *Suberites caminatus*. Their structures and relative stereochemistries were determined by spectroscopic methods. Compound 1 features a novel structural type of suberitane network, and an epimer of compound 2 seems to be the biogenetic precursor of 1 and suberitenones A and B. The exclusive prevalence of suberitane-derived sesterterpene metabolites in species of *Suberites* suggests that this skeleton may be a chemical marker of the genus.

© 2004 Elsevier Ltd. All rights reserved.

In contrast to other Antarctic sponges,¹ the genus *Suberites* appears to be a specialized factory producing a single type of isoprenic skeletal class of metabolites: sesterterpenes. Collections from King George Island² and from McMurdo Sound³ have provided suberite-nones A and B, sesterterpenes with a tetracarbocyclic skeleton. These sesterterpenes have defensive properties toward a major Antarctic spongivore, the sea star *Perknaster fuscus*.³ Also, suberitenone B shows properties as an inhibitor of the cholesteryl ester transfer protein (CETP).²

Due to our interest in benthic Antarctic organisms,⁴ from an extract of *Suberites caminatus* we have recently described caminatal, a minor metabolite with an unprecedented carbon backbone, caminatane, biogenetically derived from the suberitane skeleton by the oxidative rupture of a ring bond.¹ This finding prompted us to gather *S. caminatus* off King George Island (South Shetlands, Antarctica), in an area closer to the

previous collection. In this paper we report on the isolation of two new suberitane-related sesterterpenes, 1and 2, and the known² suberitenone B, 3, from this species.

Compound 1 is a pentacyclic structure sharing with suberitenones the three carbocyclic rings unit fused in a perhydrophenanthrene fashion. The remaining cyclohexanone and oxane rings are held together by an oxaspiro carbon, featuring a novel structural type of the suberitane framework. An epimer of compound 2 could be a biogenetic precursor of 1 and suberitenones A and B.

From the crude extract of *S. caminatus* the sesterterpenes 1-3 were isolated after flash chromatography followed by successive gel filtration and HPLC.⁵

Oxaspirosuberitenone 1^6 was a colorless oil. Its EIMS spectrum showed a peak at m/z 446 [M]⁺ that corresponds to the empirical formula $C_{27}H_{42}O_5$ (HREIMS). The ¹³C NMR spectrum of 1, Table 1, indicated the presence of 27 carbons in the molecule whose multiplicities were determined by DEPT spectral data: six methyl groups, eight methylenes, seven methines (three geminal to oxygen), four sp³ quaternary carbons, one

^{*} Corresponding author. Tel.: +34-922-252144; fax: +34-922-260135; e-mail: jdarias@ipna.csic.es

^{0040-4039/\$ -} see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2004.04.091

Table 1. ¹H and ¹³C NMR data of compounds 1–3 and HMBC of 1 [500 MHz, δ ppm, (J) Hz, CDCl₃]

#	1			2		3	
	$\delta_{ m H}$	$\delta_{ m C}$	HMBC	$\delta_{ m H}$	$\delta_{\rm C}$	$\delta_{ m H}$	$\delta_{\rm C}$
1	0.77 d (4.0)	42.3		0.88 m	42.3	0.84 m	41.8
	1.70 m			1.68 m		1.75 m	
2	1.40 m	18.9		1.45 m	18.8	1.43 m	18.5
	1.70 m			1.70 m		1.72 m	
3	1.18 m	44.7		1.15 m	44.7	1.12 m	44.2
	1.35 m			1.35 m		1.35 m	
4		34.4			34.4		34.0
5	0.98 m	57.2	C-9, C-10, C-15, C-16, C-18	0.88 m	57.2	1.02 d (2.4)	56.7
6	5.44 ddd (2.7, 2.7, 2.7)	71.1	C-8, C-10	5.46 ddd (2.7, 2.7, 2.7)	70.8	5.45 br d (2.9)	70.7
7	α: 1.19 m	47.1	C-5, C-6, C-8, C-9, C-14,	1.29 m	47.3	1.24 dd (3.6, 14.4)	46.9
	β: 1.85 dd (2.6, 14.7)		C-17	1.92 dd (2.5, 14.8)		1.94 dd (2.7, 14.4)	
8		35.3			35.5		34.2
9	0.82 dd (2.2, 15.7)	59.1		1.04 m	59.6	0.88 m	58.8
10		37.5	C-1, C-8, C-17, C-18		37.5		37.1
11	1.45 m	18.9		1.30 m	18.8	1.58 m	16.9
	1.70 m			1.68 m		1.68 m	
12	1.39 m	38.2		1.30 m	38.2	1.11 m	37.9
	1.49 m			2.25 m		2.02 m	
13		85.1			73.0		73.5
14	α: 0.98 m	56.4	C-7, C-9, C-12, C-13, C-19	1.00 m	54.8	1.07 d (13.5)	53.6
	β: 2.30 m			1.88 dd (2.5, 13.6)		1.85 dd (2.7, 13.5)	
15	0.90 s	33.3	C-3, C-4, C-5, C-16	0.91 s	33.3	0.90 s	32.9
16	0.99 s	23.4	C-3, C-4, C-5, C-15	0.98 s	23.4	0.99 s	23.0
17	1.28 s	22.2	C-7, C-8, C-9, C-14	1.17 s	22.2	1.33 s	22.5
18	1.17 s	17.6	C-1, C-5, C-9, C-10	1.12 s	17.7	1.18 s	17.2
19	2.15 m	50.6		2.50 m	40.7	1.72 m	48.0
20	4.40 s	80.9	C-13, C-19, C-21, C-22,	2.50 m	26.9	4.65 dd (2.9, 5.5)	64.3
			C-24	2.40 m			
21	4.09 br s	85.3	C-13, C-20, C-22, C-23	6.75 m	145.8	6.67 dq (1.5, 5.5)	141.6
22	2.25 m	50.6	C-23, C-25		135.4		137.3
23		211.6			200.8		200.9
24	β: 2.35 dd (3.6, 18.0)	43.8	C-13, C-19, C-20, C-22,	2.39 m	39.3	2.50 dd (3.0, 16.8)	32.9
	α: 2.64 dd (2.9, 18.0)		C-23	2.58 dd (2.7, 15.4)		2.81 dd (13.4, 16.8)	
25	1.18 d (7.4)	12.8	C-21, C-22, C-23	1.77 d (1.6)	15.9	1.79 br s	15.6
26		170.8			170.6		170.7
27	2.02 s	22.2	C-26	2.02 s	21.9	2.04 s	21.9

ketone, and one carboxylic carbon. The ¹H NMR spectrum, Table 1, showed signals for three protons geminal to oxygen at δ 5.44 (ddd, J = 2.7, 2.7, 2.7 Hz), δ 4.40 (s) and δ 4.09 (br s), one acetate methyl group at δ 2.02 (s) and upfield signals for five methyl groups at δ 1.28 (s), δ 1.18 (d, J = 7.4 Hz), δ 1.17 (s), δ 0.99 (s), δ 0.90 (s).

From the ${}^{1}H{-}{}^{1}H$ COSY and ${}^{1}H{-}{}^{13}C$ HMBC experiments and from the comparison of the ${}^{1}H$ and ${}^{13}C$ NMR data with those of suberitenone B, 3, rings A–C were confirmed. COSY measurement established the corresponding spin system of fragments **a**–**c**, and the con-

nectivities of these fragments, as depicted in 1, were aided by HMBC experiments. Compounds 1 and 3 possess an identical molecular formula and, therefore, the same unsaturation degree, thus the absence of the C-21–C-22 double bond suggested the presence of a new ring in 1. The sp³ carbons C-21 and C-22 in compound 1 suggested that a new ring E was formed by conjugated addition of the hydroxylic group at C-13 to the α , β unsaturated ketone of ring D of suberitenone B. This gave place to an oxa-bicyclo[3.2.1]octane moiety, where the oxaspiro fashion of the linkage between both tricyclic and cyclohexanone ring moieties of the molecule was secured by the following HMBC: H₂-14/C-13, C-19;

4709

 H_2 -24/C-13, C-19, and H-21/C-13. Thus, the overall planar structure of a sesterterpene for 1 with the requisite seven degrees of unsaturation can be suggested.

The relative configuration of the chiral centers of **1** was determined on the basis of 2D NOESY experiments and spectroscopic data. Upfield chemical shifts of the protons of Me-17 and Me-18 indicated a *trans-anti-trans* fusion of **A/B/C** rings,^{2,7} (Fig. 1). The NOE effects observed between H₃-18 and H₃-16/H₃-17, and between H₃-15 and H-5/H-6, placed Me-16, Me-17, Me-18, and the acetate group on the same side of the molecule, thus indicating that the corresponding substituents on rings **A–C** possess the same relative 5**S*, 6**R*, 8**S*, 9**S*, 10**R* stereochemistry as in suberitone B, **3**.

The 13^{R} stereochemistry of the oxaspiro was established by the NOEs observed between H_3 -17 and H-14 β . and between H-14 α and H-19, indicating that C-19 and the oxygen at C-13 must be in α and β dispositions, respectively. The ¹H NMR spectrum of **1** showed a singlet for H-20 and a broad singlet for H-21. The energy-minimized conformation of 1, deduced by molecular mechanics, is shown in Figure 1. In this conformer, the H-20/H-19 and H-21/H-20 dihedral angles were predicted to be 77.5° and 78.2°, respectively, which is in concordance with the observed value around 0 Hz for both $J_{\text{H-20/H-19}}$ and $J_{\text{H-21/H-20}}$. The NOE effects between H-19 and H₂-24/H-20; and between H-22 and H-20/H-21 are compatible with the observed J-coupling and established the relative configuration 19^*S , 20^*S , 21^*R , 22*S of the chiral centers of ring **D**, and thus the overall stereochemistry of 1 as shown in Figure 1.

19-Episuberitenone 2^8 was isolated as a colorless oil. The EIMS spectrum showed a peak at m/z 430 that corresponds to the molecular formula $C_{27}H_{42}O_4$ [M]⁺ (HREIMS), indicating that 2 has one oxygen atom less than suberitenone B. Comparison of the ¹H and ¹³C NMR spectra of 2 and 3 (Table 1) showed strong similarities, the most significative difference being the replacement of a methine geminal to oxygen (δ_{C-20} 64.3,

Figure 1. Selected NOEs of compound 1.

 $\delta_{\text{H-20}}$ 4.65 dd) of suberitenone B by upfield protons of a methylene ($\delta_{\text{C-20}}$ 26.9, $\delta_{\text{H-20}}$ 2.50 m and 2.40 m) in 2. These data, that are consistent with the absence in 2 of the hydroxyl group at C-20 of suberitenone B, were confirmed by COSY and HMBC experiments.

Comparison of the ¹H chemical shifts of compounds 2 and 3 were used to establish the fusion of rings A-C, whereas 2D NOESY experiments (Fig. 2) allowed us to assign the relative stereochemistry of all chiral centers of 2 except C-13. The NOE effect observed between H-6 and H₃-15 and both protons of the methylene H₂-7 indicated that the acetate group at C-6 must be on the same face of the molecule as the methyl groups Me-16, Me-17, and Me-18. Thus partial relative configurations 5*S, 6*R, 8*S, 9*S, 10*R were established. As a 13*Rstereochemistry of suberitenone B was assessed by extensive NOE experiments on its acetal derivative 4^{2} the almost identical chemical shifts of the respective C-13 of **2**: δ_C 73.0 and **3**: δ_C 73.5 allowed us to assign the same 13^*R configuration as in 3 (Fig. 2). However, strong differences around 7 ppm in C-19 (2: δ_C 40.7; 3: δ_C 48.0) suggested changes in its configuration. The NOEs observed between an unoverlapped proton of H₂-14 and the downfield proton of H_2 -24, and between an unoverlapped proton of H₂-12 and one proton of H₂-20 suggested an S configuration for C-19, and enabled us to establish the whole stereochemistry of 2 as depicted in Figure 2.

It is not unreasonable to query whether the oxaspiro ring system of 1 is derived biosynthetically or by intramolecular Michael-type addition of the hydroxylic group at C-13 during experimental work. However, when a sample of suberitenone B, isolated in this study, was stirred in silica gel and chloroform at room temperature for 48 h no changes were observed in the starting material. Moreover, the exposure of 3 to a variety of reaction conditions² to give the acetal 4 and also different C-20 ester derivatives, elapsed without detection of 1. All this suggested that 1 is a naturally occurring metabolite.

19-Episuberitenone 2 could be biogenetically derived from the oxidation of the previously proposed¹

Figure 3. Possible biogenesis of compounds 1–3 and 6.

tetracyclic intermediate 5. Subsequent oxidation at the allylic position of the enone of 2a will produce suberitenone B, 3 and, by dehydration of 3, suberitenone A, 6. Acid-catalyzed intramolecular attack of the hydroxyl group at C-13 to the conjugated position of enone 3 will transform suberitenone B into the pentacyclic oxaspirosuberitenone 1 (Fig. 3). Until now all suberitane-derived sesterterpenes showed the same C-19 configuration. Compound 2 is the first suberitane-derived metabolite epimeric at C-19. This finding supports 5 as discrete intermediate in the proposed biogenetic pathway.

Irrespective of the location^{2,3} of *Suberites* species, similar sesterterpenes related to the suberitane skeleton were found, suggesting that these compounds are de novo synthesized. Since no other skeletal class of isoprene-derived metabolites has been found, the suberitane skeleton may be a chemical marker and a helpful tool for biological studies because of the well recognized complexity of the taxonomical classification of marine sponges.

Secondary metabolites are thought to enhance the fitness of the producing species.⁹ The exclusive prevalence of suberitane-derived sesterpene metabolites in species of *Suberites* implies that this invertebrate and its associated microorganisms provide a wealth of material for biosynthetic studies that can reveal (mevalonate or mevalonate-independent pathway) much about the symbiotic or the de novo origin of these metabolites, even enhancing our understanding of how prokariotic and eukariotic cells make lasting alliances.¹⁰

Acknowledgements

This work was supported by the Ministerio de Ciencia y Tecnología (MCYT), projects: REN2002-10485-E/ANT and PPQ2002-02494), Instituto Antártico Chileno (IN-ACH), and DGUI (Gobierno de Canarias: PI2002/044).

References and notes

- Díaz-Marrero, A.-R.; Brito, I.; Dorta, E.; Cueto, M.; San-Martín, A.; Darias, J. *Tetrahedron Lett.* 2003, 44, 5939– 5942, and references cited therein.
- Shin, J.; Seo, Y.; Rho, J. R.; Baek, E.; Kwon, B. M.; Jeong, T. S.; Bok, S. H. J. Org. Chem. 1995, 60, 7582– 7588.
- 3. Baker, B. J.; Barlow, T. L.; McClintock, J. B. *Antarctic J.* US **1997**, *32*, 90–92.
- Díaz-Marrero, A.-R.; Dorta, E.; Cueto, M.; San-Martín, A.; Darias, J. *Tetrahedron* 2004, 60, 1073–1078.
- 5. Suberites caminatus was collected by SCUBA diving at King George Island (South Shetlands, Antarctica) at -25 m. Wet sample (1.5 kg) was extracted with acetone at room temperature. After partition with AcOEt-H₂O, the organic phase was concentrated to give a dark residue (3.3 g) and the extract was chromatographed by flash chromatography on silica gel. The fraction eluted with hexane-EtOAc (80:20) (64.6 mg) was further separated by gel filtration to give a fraction (9.5 mg) which was purified by HPLC (Jaigel-sil column 20×250 mm, flow 4.5 mL/min, hexane-EtOAc (70:30)) to give compound 1 (1.5 mg). From the fraction eluted with hexane-EtOAc (70:30) (232.6 mg) by flash chromatography, compound 2 (2.1 mg) was isolated after gel filtration chromatography (11.3 mg), and further HPLC (Jaigel-sil column 20 × 250 mm, flow 4.5 mL/min, hexane-AcOEt (70:30)).
- 6. Colorless oil; $[\alpha]_D^{25} + 140$ (*c* 0.093, CHCl₃); IR (film) v_{max} 3409, 1735, 1638 cm⁻¹; ¹H and ¹³C NMR (CDCl₃), see Table 1; EIMS *m*/*z* 446 [M]⁺ (7), 356 [M–AcOH]⁺ (49), 181 (100); HREIMS [M]⁺ 446.2992 (calcd for C₂₇H₄₂O₅, 446.3032).
- 7. Smith, W. B. Annu. Rep. NMR Spectrosc. 1978, 8, 199.
- 8. Colorless oil; $[\alpha]_{D}^{25} +100$ (*c* 0.13, CHCl₃); IR (film) v_{max} 3387, 1728, 1657, 1635 cm⁻¹; ¹H and ¹³C NMR (CDCl₃), see Table 1; EIMS *m/z* 430 [M]⁺ (5), 412 [M–H₂O]⁺ (60), 352 [M–H₂O–AcOH]⁺ (100), 337 (44), 243 (62); HRE-IMS [M]⁺ 430.3055 (calcd for C₂₇H₄O₄, 430.3083), 412.2923 (calcd for C₂₇H₄₀O₃, 412.2977), 352.2712 (calcd for C₂₅H₃₆O, 352.2766).
- Engel, S.; Jensen, P. R.; Fenical, W. J. Chem. Ecol. 2002, 1971–1985.
- MacFall-Ngai, M.; Rubym, E. G. W. Curr. Opin. Microbiol. 2002, 603–607.