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Abstract—Two novel sesterterpenes 1 and 2 have been isolated from the Antarctic sponge Suberites caminatus. Their structures and
relative stereochemistries were determined by spectroscopic methods. Compound 1 features a novel structural type of suberitane
network, and an epimer of compound 2 seems to be the biogenetic precursor of 1 and suberitenones A and B. The exclusive
prevalence of suberitane-derived sesterterpene metabolites in species of Suberites suggests that this skeleton may be a chemical
marker of the genus.
� 2004 Elsevier Ltd. All rights reserved.
In contrast to other Antarctic sponges,1 the genus
Suberites appears to be a specialized factory producing a
single type of isoprenic skeletal class of metabolites:
sesterterpenes. Collections from King George Island2

and from McMurdo Sound3 have provided suberite-
nones A and B, sesterterpenes with a tetracarbocyclic
skeleton. These sesterterpenes have defensive properties
toward a major Antarctic spongivore, the sea star
Perknaster fuscus.3 Also, suberitenone B shows proper-
ties as an inhibitor of the cholesteryl ester transfer
protein (CETP).2

Due to our interest in benthic Antarctic organisms,4

from an extract of Suberites caminatus we have recently
described caminatal, a minor metabolite with an
unprecedented carbon backbone, caminatane, bioge-
netically derived from the suberitane skeleton by the
oxidative rupture of a ring bond.1 This finding promp-
ted us to gather S. caminatus off King George Island
(South Shetlands, Antarctica), in an area closer to the
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previous collection. In this paper we report on the iso-
lation of two new suberitane-related sesterterpenes, 1
and 2, and the known2 suberitenone B, 3, from this
species.

Compound 1 is a pentacyclic structure sharing with
suberitenones the three carbocyclic rings unit fused in a
perhydrophenanthrene fashion. The remaining cyclo-
hexanone and oxane rings are held together by an
oxaspiro carbon, featuring a novel structural type of
the suberitane framework. An epimer of compound 2
could be a biogenetic precursor of 1 and suberitenones
A and B.

From the crude extract of S. caminatus the sesterterp-
enes 1–3 were isolated after flash chromatography fol-
lowed by successive gel filtration and HPLC.5

Oxaspirosuberitenone 16 was a colorless oil. Its EIMS
spectrum showed a peak at m=z 446 [M]þ that corre-
sponds to the empirical formula C27H42O5 (HREIMS).
The 13C NMR spectrum of 1, Table 1, indicated the
presence of 27 carbons in the molecule whose multi-
plicities were determined by DEPT spectral data: six
methyl groups, eight methylenes, seven methines (three
geminal to oxygen), four sp3 quaternary carbons, one
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Table 1. 1H and 13C NMR data of compounds 1–3 and HMBC of 1 [500 MHz, d ppm, ðJÞ Hz, CDCl3]
# 1 2 3

dH dC HMBC dH dC dH dC

1 0.77 d (4.0) 42.3 0.88 m 42.3 0.84 m 41.8

1.70 m 1.68 m 1.75 m

2 1.40 m 18.9 1.45 m 18.8 1.43 m 18.5

1.70 m 1.70 m 1.72 m

3 1.18 m 44.7 1.15 m 44.7 1.12 m 44.2

1.35 m 1.35 m 1.35 m

4 34.4 34.4 34.0

5 0.98 m 57.2 C-9, C-10, C-15, C-16, C-18 0.88 m 57.2 1.02 d (2.4) 56.7

6 5.44 ddd (2.7, 2.7, 2.7) 71.1 C-8, C-10 5.46 ddd (2.7, 2.7, 2.7) 70.8 5.45 br d (2.9) 70.7

7 a: 1.19 m 47.1 C-5, C-6, C-8, C-9, C-14, 1.29 m 47.3 1.24 dd (3.6, 14.4) 46.9

b: 1.85 dd (2.6, 14.7) C-17 1.92 dd (2.5, 14.8) 1.94 dd (2.7, 14.4)

8 35.3 35.5 34.2

9 0.82 dd (2.2, 15.7) 59.1 1.04 m 59.6 0.88 m 58.8

10 37.5 C-1, C-8, C-17, C-18 37.5 37.1

11 1.45 m 18.9 1.30 m 18.8 1.58 m 16.9

1.70 m 1.68 m 1.68 m

12 1.39 m 38.2 1.30 m 38.2 1.11 m 37.9

1.49 m 2.25 m 2.02 m

13 85.1 73.0 73.5

14 a: 0.98 m 56.4 C-7, C-9, C-12, C-13, C-19 1.00 m 54.8 1.07 d (13.5) 53.6

b: 2.30 m 1.88 dd (2.5, 13.6) 1.85 dd (2.7, 13.5)

15 0.90 s 33.3 C-3, C-4, C-5, C-16 0.91 s 33.3 0.90 s 32.9

16 0.99 s 23.4 C-3, C-4, C-5, C-15 0.98 s 23.4 0.99 s 23.0

17 1.28 s 22.2 C-7, C-8, C-9, C-14 1.17 s 22.2 1.33 s 22.5

18 1.17 s 17.6 C-1, C-5, C-9, C-10 1.12 s 17.7 1.18 s 17.2

19 2.15 m 50.6 2.50 m 40.7 1.72 m 48.0

20 4.40 s 80.9 C-13, C-19, C-21, C-22, 2.50 m 26.9 4.65 dd (2.9, 5.5) 64.3

C-24 2.40 m

21 4.09 br s 85.3 C-13, C-20, C-22, C-23 6.75 m 145.8 6.67 dq (1.5, 5.5) 141.6

22 2.25 m 50.6 C-23, C-25 135.4 137.3

23 211.6 200.8 200.9

24 b: 2.35 dd (3.6, 18.0) 43.8 C-13, C-19, C-20, C-22, 2.39 m 39.3 2.50 dd (3.0, 16.8) 32.9

a: 2.64 dd (2.9, 18.0) C-23 2.58 dd (2.7, 15.4) 2.81 dd (13.4, 16.8)

25 1.18 d (7.4) 12.8 C-21, C-22, C-23 1.77 d (1.6) 15.9 1.79 br s 15.6

26 170.8 170.6 170.7

27 2.02 s 22.2 C-26 2.02 s 21.9 2.04 s 21.9
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ketone, and one carboxylic carbon. The 1H NMR
spectrum, Table 1, showed signals for three protons
geminal to oxygen at d 5.44 (ddd, J ¼ 2:7, 2.7, 2.7Hz), d
4.40 (s) and d 4.09 (br s), one acetate methyl group at d
2.02 (s) and upfield signals for five methyl groups at d
1.28 (s), d 1.18 (d, J ¼ 7:4Hz), d 1.17 (s), d 0.99 (s), d
0.90 (s).

From the 1H–1H COSY and 1H–13C HMBC experi-
ments and from the comparison of the 1H and 13C NMR
data with those of suberitenone B, 3, rings A–C were
confirmed. COSY measurement established the corre-
sponding spin system of fragments a–c, and the con-
nectivities of these fragments, as depicted in 1, were
aided by HMBC experiments. Compounds 1 and 3
possess an identical molecular formula and, therefore,
the same unsaturation degree, thus the absence of the C-
21–C-22 double bond suggested the presence of a new
ring in 1. The sp3 carbons C-21 and C-22 in compound 1
suggested that a new ring E was formed by conjugated
addition of the hydroxylic group at C-13 to the a,b-
unsaturated ketone of ring D of suberitenone B. This
gave place to an oxa-bicyclo[3.2.1]octane moiety, where
the oxaspiro fashion of the linkage between both tricy-
clic and cyclohexanone ring moieties of the molecule
was secured by the following HMBC: H2-14/C-13, C-19;
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H2-24/C-13, C-19, and H-21/C-13. Thus, the overall
planar structure of a sesterterpene for 1 with the requi-
site seven degrees of unsaturation can be suggested.

The relative configuration of the chiral centers of 1 was
determined on the basis of 2D NOESY experiments and
spectroscopic data. Upfield chemical shifts of the pro-
tons of Me-17 and Me-18 indicated a trans–anti–trans
fusion of A/B/C rings,2;7 (Fig. 1). The NOE effects ob-
served between H3-18 and H3-16/H3-17, and between
H3-15 and H-5/H-6, placed Me-16, Me-17, Me-18, and
the acetate group on the same side of the molecule, thus
indicating that the corresponding substituents on rings
A–C possess the same relative 5*S, 6*R, 8*S, 9*S, 10*R
stereochemistry as in suberitone B, 3.

The 13*R stereochemistry of the oxaspiro was estab-
lished by the NOEs observed between H3-17 and H-14b,
and between H-14a and H-19, indicating that C-19 and
the oxygen at C-13 must be in a and b dispositions,
respectively. The 1H NMR spectrum of 1 showed a
singlet for H-20 and a broad singlet for H-21. The en-
ergy-minimized conformation of 1, deduced by molec-
ular mechanics, is shown in Figure 1. In this conformer,
the H-20/H-19 and H-21/H-20 dihedral angles were
predicted to be 77.5� and 78.2�, respectively, which is in
concordance with the observed value around 0Hz for
both JH-20=H-19 and JH-21=H-20. The NOE effects between
H-19 and H2-24/H-20; and between H-22 and H-20/H-
21 are compatible with the observed J -coupling and
established the relative configuration 19*S, 20*S, 21*R,
22*S of the chiral centers of ring D, and thus the overall
stereochemistry of 1 as shown in Figure 1.

19-Episuberitenone 28 was isolated as a colorless oil.
The EIMS spectrum showed a peak at m=z 430 that
corresponds to the molecular formula C27H42O4 [M]þ

(HREIMS), indicating that 2 has one oxygen atom less
than suberitenone B. Comparison of the 1H and 13C
NMR spectra of 2 and 3 (Table 1) showed strong sim-
ilarities, the most significative difference being the
replacement of a methine geminal to oxygen (dC-20 64.3,
H

H

OAc
H

O

H H

O

H

H

H

OH

HH
H

19
20

21

22

24

25

14

15

16

18

17

5

6

9

13

H

H

Figure 1. Selected NOEs of compound 1.
dH-20 4.65 dd) of suberitenone B by upfield protons of a
methylene (dC-20 26.9, dH-20 2.50 m and 2.40 m) in 2.
These data, that are consistent with the absence in 2 of
the hydroxyl group at C-20 of suberitenone B, were
confirmed by COSY and HMBC experiments.

Comparison of the 1H chemical shifts of compounds 2
and 3 were used to establish the fusion of rings A–C,
whereas 2D NOESY experiments (Fig. 2) allowed us to
assign the relative stereochemistry of all chiral centers of
2 except C-13. The NOE effect observed between H-6
and H3-15 and both protons of the methylene H2-7
indicated that the acetate group at C-6 must be on the
same face of the molecule as the methyl groups Me-16,
Me-17, and Me-18. Thus partial relative configurations
5*S, 6*R, 8*S, 9*S, 10*R were established. As a 13*R
stereochemistry of suberitenone B was assessed by
extensive NOE experiments on its acetal derivative 4,2

the almost identical chemical shifts of the respective C-
13 of 2: dC 73.0 and 3: dC 73.5 allowed us to assign the
same 13*R configuration as in 3 (Fig. 2). However,
strong differences around 7 ppm in C-19 (2: dC 40.7; 3:
dC 48.0) suggested changes in its configuration. The
NOEs observed between an unoverlapped proton of H2-
14 and the downfield proton of H2-24, and between an
unoverlapped proton of H2-12 and one proton of H2-20
suggested an S configuration for C-19, and enabled us to
establish the whole stereochemistry of 2 as depicted in
Figure 2.

It is not unreasonable to query whether the oxaspiro
ring system of 1 is derived biosynthetically or by intra-
molecular Michael-type addition of the hydroxylic
group at C-13 during experimental work. However,
when a sample of suberitenone B, isolated in this study,
was stirred in silica gel and chloroform at room tem-
perature for 48 h no changes were observed in the
starting material. Moreover, the exposure of 3 to a
variety of reaction conditions2 to give the acetal 4 and
also different C-20 ester derivatives, elapsed without
detection of 1. All this suggested that 1 is a naturally
occurring metabolite.

19-Episuberitenone 2 could be biogenetically derived
from the oxidation of the previously proposed1
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Figure 2. Selected NOEs of compound 2.
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tetracyclic intermediate 5. Subsequent oxidation at the
allylic position of the enone of 2a will produce suberi-
tenone B, 3 and, by dehydration of 3, suberitenone A, 6.
Acid-catalyzed intramolecular attack of the hydroxyl
group at C-13 to the conjugated position of enone 3 will
transform suberitenone B into the pentacyclic oxaspi-
rosuberitenone 1 (Fig. 3). Until now all suberitane-
derived sesterterpenes showed the same C-19 configu-
ration. Compound 2 is the first suberitane-derived
metabolite epimeric at C-19. This finding supports 5 as
discrete intermediate in the proposed biogenetic path-
way.

Irrespective of the location2;3 of Suberites species, simi-
lar sesterterpenes related to the suberitane skeleton were
found, suggesting that these compounds are de novo
synthesized. Since no other skeletal class of isoprene-
derived metabolites has been found, the suberitane
skeleton may be a chemical marker and a helpful tool
for biological studies because of the well recognized
complexity of the taxonomical classification of marine
sponges.
Secondary metabolites are thought to enhance the fit-
ness of the producing species.9 The exclusive prevalence
of suberitane-derived sesterpene metabolites in species
of Suberites implies that this invertebrate and its asso-
ciated microorganisms provide a wealth of material for
biosynthetic studies that can reveal (mevalonate or
mevalonate-independent pathway) much about the
symbiotic or the de novo origin of these metabolites,
even enhancing our understanding of how prokariotic
and eukariotic cells make lasting alliances.10
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